
On an approximative solution to the

marginal problem

Martin Janžura
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Abstract

With the aid of the Maximum Entropy principle, a solution to the
marginal problem is obtained in a form of parametric exponential (Gibbs-
Markov) distribution. The unknown parameters can be calculated by an
optimization procedure that agrees with the maximum likelihood estimate
but it is numerically hardly feasible for highly dimensional systems. A nu-
merically easily feasible solution can be obtained by the algebraic Möbius
formula. The formula, unfortunately, involves terms that are not directly
available but can be approximated. And the main aim of the present
paper consists in this approximation.

1 Introduction

We address the so-called marginal problem, i.e. the problem of reconstruction
of a joint (global) distribution from a collection of marginal (local) ones. To the
contrary with some other approaches, where the problem is studied either by
graphical or combinatorial reasoning, or by iterative computational algorithms
(see, e.g., [6] or [7]), here the solution is inspired, more-or-less, by a ”statistical”
point of view.

In order to find a unique representing joint distribution for the system, we
employ the maximum entropy principle. Then, providing some technical as-
sumptions being satisfied, the solution agrees with a parametric exponential
(Gibbs) distribution as the most natural and convenient representative. The
distribution is also Markovian with the neighborhood system induced by the
system of marginals (Section 5.). Thus the structure of the distribution is known
but the parameters are given only implicitly. In order to fix the parameters,
we have to solve the same task as within the problem of statistical estimation.
In particular, the parameters are obtained by an optimization procedure that
agrees with the maximum likelihood (ML) estimate (as if the marginals were
obtained from data). Thus, we may imagine the “input” information contained
in the system of marginal (local) distributions as an evidence, and the problem
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of finding the unknown joint distribution is re-formulated as a parameter esti-
mation problem. But, as it is well known, under a certain size of the model, any
direct optimization method is unfeasible. Therefore, for calculating parameters
of the representing distributions in full generality we need to apply some sim-
ulation procedure, usually based on the Markov Chain Monte Carlo methods
(see Section 6.).

But, as we show finally in Section 7., we can also apply the combinatorial
Möbius formula for direct evaluating the potentials of the Gibbs distributions,
and these potentials are equal exactly to the unknown parameters.

Unfortunately, the formula involves marginals over larger sets of nodes,
namely over the neighborhoods of particular nodes. Thus, for an easy calcula-
tion of the maximal entropy solution to the marginal problem , we have, at first,
to extend the original marginals to these larger sets, at least approximately.

An approximative method of these extension, based partly on the ideas in-
troduced in [6] or [7], is presented in Section 8. as the main goal of this paper.

For many topics of the present paper [7] or [9] are the basic references. For
exponential distributions see [1]. For stochastic gradient method see [9] or [10],
for general MCMC simulations see [2]. For the marginal problem see, e.g., [6]
and the references therein. Some specific approaches can be found, e.g., in [4]
or [8].

2 Basic definitions

Let us consider a finite set S of indices (sites, variables, nodes), and the space
of configurations

XS =
⊗
s∈S
Xs

where Xs is a finite state space for every s ∈ S. For every V ⊂ S we denote
by PrV : XS → XV the projection onto the space XV =

⊗
s∈V Xs, and by

BV = σ(PrV ) the σ-algebra of cylinder (local) sets.
Further, by PV we denote the class of all probability measures on BV , and

by FV the class of all real-valued BV -measurable functions. (PV can be al-
ternatively understood as the set of probability measures on XV , and FV as
the set of functions on XV . We shall not distinguish these two modes.) For
PV ∈ PV and W ⊂ V we shall denote by PV/W ∈ PW its projection into the
space PW , i.e., the corresponding marginal distribution. ( Whenever no confu-
sion may occur, we shall write directly PW .) On the other hand, by PA|B for
A,B ⊂ S,A ∩B = ∅, we denote the corresponding conditional distribution.

3 Problem

Let us consider a system of (non-void) subsets V ⊂ exp S, satisfying V \W 6= ∅
for V,W ∈ V, V 6= W , and a collection of marginal distributions

Q = {QV }V ∈V



On an approximative solution to the marginal problem 3

where
QV ∈ PV for every V ∈ V.

Let us denote

PQ = {PS ∈ PS ;PS/V = QV for every V ∈ V}.

If PQ 6= ∅ we quote the collection Q as strongly consistent.
The problem to be solved now consists in finding a suitable representative

PS ∈ PQ,

providing Q is strongly consistent.

4 Maximum entropy principle

Whenever |PQ| > 1 we have to employ some additional criterion for selecting
PS , which, in our case, will be the maximum entropy principle . For a justifi-
cation of such approach see, e.g., [5] as the standard reference.

Let us recall the formulas for the entropy and the I -divergence, respectively,
namely

H(P ) =
∫
− logP dP =

∑
xS∈XS

− logP (xS)P (xS),

and

I(P |Q) =
∫

log
P

Q
dP =

∑
xS∈XS

log
P (xS)
Q(xS)

P (xS)

providing the terms are well defined. Otherwise we set I(P |Q) =∞.
Thus, applying the maximum entropy principle , we seek for

PS ∈ argmaxPS∈PQH(PS)

or, more generally,
PS ∈ argminPS∈PQI(PS |RS)

where RS ∈ PS is some fixed reference probability measure.
For the sake of brevity, we shall deal directly with the first definition, which,

after all, agrees with the latter one for uniform RS .

5 Gibbs-Markov distributions

Further, we shall quote PS ∈ P as the Gibbs distribution with the potential
U = {UA}A∈A where UA ∈ FA for every A ∈ A ⊂ exp S (see, e.g., [9] for
detailed treatment) if

PS(yS) ∝ exp{
∑
A∈A

UA(yA)}.
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Then we shall write PS = PUS . Moreover, since

PU{s}|S\{s}(y{s}|yS\{s}) ∝ exp{
∑

A∈A,A3s
UA(yA)},

PUS is also Markovian with the neighborhood system ∂ = {∂(s)}s∈S given by

t ∈ ∂(s) iff {t, s} ⊂ A for some A ∈ A.

6 Maximum entropy solution

Now, let us fix a configuration 0S ∈ XS . For B ⊂ S we denote X 0
B =

⊗
b∈B(Xb \

{0b}). Further, we denote

V = {W ⊂ S; ∅ 6= W ⊂ V for some V ∈ V}.

Let as consider the class of potentials

U0 = {U = (UW )W∈V ; UW ∈ FW andUW (xW ) = 0 for everyxW ∈ XW \ X 0
W }.

Then U0 is the space of so-called vacuum potentials (see, e.g., [3]). We may also
write UW =

∑
xW∈X 0

W
UW (xW )δxW with some real constants {UW (xW )}xW∈X 0

W

for every W ∈ V.

Proposition 1. Let PUS ∈ PQ for some U ∈ U0. Then U ∈ U0 is given
uniquely and

PUS = PS = argmaxPS∈PQH(PS).

Proof. See Proposition 1 and 2 in [3].

Remark 1. We shall omit here the question of existence of PUS ∈ PQ (see
also, e.g., [3]). Here it will be simply assumed. Let us emphasize that such
assumption involves also the condition

QV > 0 for every V ∈ V.

That will make the further calculations much easier since we do not have to
take care about zeros.

We shall rather discuss the problem of numerical feasibility. Namely, the
unknown parameters {UW (xW )}xW∈X 0

W ,W∈V
should be identified by the condi-

tion
PUS ∈ PQ

which means

PUW (xW ) = QW (xW ) for every xW ∈ X 0
W ,W ∈ V
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or, equivalently, by

U = arg max
U∈U0

∑
W∈V

∑
xW∈X 0

W

UW (xW )QW (xW )− log
∑

xS∈XS

exp{
∑
W∈V

UW (xW )}

 .
Both methods contain terms that involve summing over the set XS which is

numerically hardly feasible for large S.
Hence, the stochastic gradient method (cf. [9], Section 15.4, or [10]) was

introduced, based on substituting the “theoretical” terms by their simulated
counterparts. The Markov Chain Monte Carlo (MCMC) – or some similar
method – can be used for the simulation (cf., e. g., [2] for a survey).

Let us recall here that, in principle, the above method of identifying the pa-
rameters agrees with the statistical parameter estimation, namely the maximum
likelihood (ML), or, equivalently, the minimum I-divergence method. The only
difference consists in the fact that within the statistical estimation the collection
{QW (xW )}xW∈X 0

W ,W∈V
is given as an ”evidence” obtained from observed data,

in particular QW (xW ) = P̂S/W (xW ) for every xW ∈ X 0
W ,W ∈ V where P̂S is

the empirical distribution.

7 Möbius formula

Nevertheless, due to the problems as described above, we prefer much more
straightforward method, given by Möbius formula (see, e.g., [9]), for identifying
the parameters. Let us introduce the formula, which is rather general, in a form
suitable for our purposes.

Proposition 2.
Let us denote Φ(xS) = logPUS (xS) with U ∈ U0. Then

UW (xW ) =
∑
B⊂W

(−1)|W\B|
[
Φ(xB , 0S\B)− Φ(0S)

]
for every xW ∈ X 0

W ,W ∈ V.

Proof.
The relation can be verified by direct substitution. See, e.g.,[3] or [9].

Now, by elementary rearrangements, we obtain

UW (xW ) =
∑
B⊂W

(−1)|W\B|
[

log
PUS (xB , 0S\B)

PUS (0S)

]
=

=
∑

B⊂W\{s}

(−1)|W\B|
[

log
PUS (xB , 0S\B)

PUS (xB∪{s}, 0S\{B∪{s}})

]
=
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=
∑

B⊂W\{s}

(−1)|W\B|
[

log
PU{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})

PU{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

]

for every xW ∈ X 0
W ,W ∈ V, where s ∈ W is arbitrary fixed. For the last ex-

pression note that (W \ {s}) ⊂ ∂(s) since s ∈W .
Now, suppose we are able to extend the original system of marginals Q

consistently into the system

Q∂ = {Q∂(s)}s∈S ,

where ∂(s) = ∂(s) ∪ {s}, i.e.

PUS ∈ PQ ∩ PQ∂

can be guaranteed. Then we can calculate the parameters {UW (xW )}xW∈X 0
W ,W∈V

directly from the Möbius formula, namely

UW (xW ) =
∑

B⊂W\{s}

(−1)|W\B|
[
log

Q{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})
Q{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

]

for every xW ∈ X 0
W ,W ∈ V.

Actually, we do not need to know the complete distributions Q∂(s), s ∈ S,
but only Q∂(s)(xW , 0∂(s)\W ) for every W ∈ V,W ⊂ ∂(s), and xW ∈ XW .

8 Approximation

Unfortunately, the exact extension is usually hardly available, but, from the
practical point of view, a reasonable approximation can be sufficient. Let us
continue with the above reasoning in order to obtain

UW (xW ) =
∑

B⊂W\{s}

(−1)|W\B|
[

log
Q∂(s)(xB , 0∂(s)\B})

Q∂(s)(xB∪{s}, 0∂(s)\{B∪{s}})

]

=
∑
B⊂W

(−1)|W\B|
[

log
Q∂(s)(xB , 0∂(s)\B})

Q∂(s)(0∂(s))

]
.

Now, for approximating Q∂(s) we shall use a rather standard product form

(see, e.g., [4],[6], or [7]), but, first of all, we need some more notation.
For s ∈ S we denote Vs = {V ∈ V;V 3 s}, vs = |Vs|, and Is the set of all

possible enumerations of the elements of Vs. Then, for every ρ ∈ Is, we may set

Q̂ρ
∂(s)

=

∏
A∈Vs QA∏

j=1,...,vs
QBρj

where Bρj = Aρ(j) ∩ (
⋃j−1
i=1 Aρ(i) ) for every j = 1, . . . , vs, as a natural estimate.
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Remark 2. The product form for Q̂ρ
∂(s)

can be also justified by the assump-
tion

Q∂(s)(xB , 0∂(s)\B})

Q∂(s)(xB∪{s}, 0∂(s)\{B∪{s}})
=
Q{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})
Q{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

=

=
PU{s}|∂(s)(0{s}|xB , 0∂(s)\{B∪{s}})

PU{s}|∂(s)(x{s}|xB , 0∂(s)\{B∪{s}})

where the latter term can be factorized by definition (see Section 5.).
Further, for every pair A,W ∈ V let us denote

ûW,A(xW ) =
∑
B⊂W

(−1)|W\B|
[
log

QA(xA∩B , 0A\B})
QA(0A)

]
.

Proposition 3. Let W \A 6= ∅. Then ûW,A ≡ 0.

Proof. We may write

ûW,A(xW ) =
∑

B1⊂W∩A

∑
B2⊂W\A

(−1)|(W∩A)\B1|(−1)|(W\A)\B2|
[
log

QA(xA∩B1 , 0A\B1})
QA(0A)

]
.

And for W \A 6= ∅ we have∑
B2⊂W\A

(−1)|(W\A)\B2| = 0.

With the above defined terms, by substituting the estimate Q̂ρ
∂(s)

into the

expression for UW , we may introduce the approximation

Ûs,ρW =
∑

A∈Vs,A⊃W
uW,A −

∑
j=1,...,vs:B

ρ
j⊃W

uW,Bρj

for every W ∈ V, s ∈ W, and ρ ∈ Is. Since s ∈ W and ρ ∈ Is are ”free
parameters”, we may, finally average over all possible choices, and obtain

ÛW = |W |−1
∑
s∈W
|Is|−1

∑
ρ∈Is

Ûs,ρW

for every W ∈ V.

Remark 3. It is apparent that for large W many terms disappear. E.g., for
W ∈ V we have actually Ûs,ρW = uW,W for every s ∈W and ρ ∈ Is, and therefore
also ÛW = uW,W .
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Remark 4. The main advantage of the method is given by its non-sensitivity
to the break of assumptions. In practise, we do not have to check the con-
sistency assumption for the original system Q, and the possible zeros can be
substituted by some small ε > 0. In addition, the model does not require any
interconnections between the approximated potential functions ÛW ,W ∈ V.

Remark 5. With the model parameters {UW (xW )}xW∈X 0
W ,W∈V

we can eas-

ily calculate the relative values of the probability, namely PUS (xS)/PUS (yS) for
xS , yS ∈ XS , and the conditional distributions PUA|∂A for ”small” A ⊂ S. More
complex terms can be again simulated, similarly as in Section 6.
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